Search for packages
purl | pkg:conan/openssl@3.0.5 |
Tags | Ghost |
Vulnerability | Summary | Fixed by |
---|---|---|
VCID-4dq2-tex3-aaac
Aliases: CVE-2022-3358 GHSA-4f63-89w9-3jjv VC-OPENSSL-20220929-CVE-2022-3358 |
OpenSSL supports creating a custom cipher via the legacy EVP_CIPHER_meth_new() function and associated function calls. This function was deprecated in OpenSSL 3.0 and application authors are instead encouraged to use the new provider mechanism in order to implement custom ciphers. OpenSSL versions 3.0.0 to 3.0.5 incorrectly handle legacy custom ciphers passed to the EVP_EncryptInit_ex2(), EVP_DecryptInit_ex2() and EVP_CipherInit_ex2() functions (as well as other similarly named encryption and decryption initialisation functions). Instead of using the custom cipher directly it incorrectly tries to fetch an equivalent cipher from the available providers. An equivalent cipher is found based on the NID passed to EVP_CIPHER_meth_new(). This NID is supposed to represent the unique NID for a given cipher. However it is possible for an application to incorrectly pass NID_undef as this value in the call to EVP_CIPHER_meth_new(). When NID_undef is used in this way the OpenSSL encryption/decryption initialisation function will match the NULL cipher as being equivalent and will fetch this from the available providers. This will succeed if the default provider has been loaded (or if a third party provider has been loaded that offers this cipher). Using the NULL cipher means that the plaintext is emitted as the ciphertext. Applications are only affected by this issue if they call EVP_CIPHER_meth_new() using NID_undef and subsequently use it in a call to an encryption/decryption initialisation function. Applications that only use SSL/TLS are not impacted by this issue. Fixed in OpenSSL 3.0.6 (Affected 3.0.0-3.0.5). |
Affected by 13 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-64cj-3d84-aaaa
Aliases: CVE-2023-0216 GHSA-29xx-hcv2-c4cp |
An invalid pointer dereference on read can be triggered when an application tries to load malformed PKCS7 data with the d2i_PKCS7(), d2i_PKCS7_bio() or d2i_PKCS7_fp() functions. The result of the dereference is an application crash which could lead to a denial of service attack. The TLS implementation in OpenSSL does not call this function however third party applications might call these functions on untrusted data. |
Affected by 4 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-77pu-uaaz-aaaa
Aliases: CVE-2023-1255 |
Out-of-bounds Read Issue summary: The AES-XTS cipher decryption implementation for 64 bit ARM platform contains a bug that could cause it to read past the input buffer, leading to a crash. Impact summary: Applications that use the AES-XTS algorithm on the 64 bit ARM platform can crash in rare circumstances. The AES-XTS algorithm is usually used for disk encryption. The AES-XTS cipher decryption implementation for 64 bit ARM platform will read past the end of the ciphertext buffer if the ciphertext size is 4 mod 5 in 16 byte blocks, e.g. 144 bytes or 1024 bytes. If the memory after the ciphertext buffer is unmapped, this will trigger a crash which results in a denial of service. If an attacker can control the size and location of the ciphertext buffer being decrypted by an application using AES-XTS on 64 bit ARM, the application is affected. This is fairly unlikely making this issue a Low severity one. |
Affected by 1 other vulnerability. Affected by 6 other vulnerabilities. |
VCID-7z6x-p6yd-aaaa
Aliases: CVE-2022-3602 GHSA-8rwr-x37p-mx23 VC-OPENSSL-20221101-CVE-2022-3602 |
A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address to overflow four attacker-controlled bytes on the stack. This buffer overflow could result in a crash (causing a denial of service) or potentially remote code execution. Many platforms implement stack overflow protections which would mitigate against the risk of remote code execution. The risk may be further mitigated based on stack layout for any given platform/compiler. Pre-announcements of CVE-2022-3602 described this issue as CRITICAL. Further analysis based on some of the mitigating factors described above have led this to be downgraded to HIGH. Users are still encouraged to upgrade to a new version as soon as possible. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. Fixed in OpenSSL 3.0.7 (Affected 3.0.0,3.0.1,3.0.2,3.0.3,3.0.4,3.0.5,3.0.6). |
Affected by 13 other vulnerabilities. |
VCID-9wtx-9sbn-aaam
Aliases: CVE-2023-0286 GHSA-x4qr-2fvf-3mr5 |
Vulnerable OpenSSL included in cryptography wheels |
Affected by 4 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-bgkw-96dy-aaas
Aliases: CVE-2023-0217 GHSA-vxrh-cpg7-8vjr |
An invalid pointer dereference on read can be triggered when an application tries to check a malformed DSA public key by the EVP_PKEY_public_check() function. This will most likely lead to an application crash. This function can be called on public keys supplied from untrusted sources which could allow an attacker to cause a denial of service attack. The TLS implementation in OpenSSL does not call this function but applications might call the function if there are additional security requirements imposed by standards such as FIPS 140-3. |
Affected by 4 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-ec3y-aejm-aaad
Aliases: CVE-2022-4450 GHSA-v5w6-wcm8-jm4q |
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0. The OpenSSL asn1parse command line application is also impacted by this issue. |
Affected by 4 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-f4yg-z94s-aaak
Aliases: CVE-2022-3996 GHSA-vr8j-hgmm-jh9r |
If an X.509 certificate contains a malformed policy constraint and policy processing is enabled, then a write lock will be taken twice recursively. On some operating systems (most widely: Windows) this results in a denial of service when the affected process hangs. Policy processing being enabled on a publicly facing server is not considered to be a common setup. Policy processing is enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function. Update (31 March 2023): The description of the policy processing enablement was corrected based on CVE-2023-0466. |
Affected by 4 other vulnerabilities. |
VCID-fmkg-h222-aaac
Aliases: CVE-2022-4203 GHSA-w67w-mw4j-8qrv |
A read buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. The read buffer overrun might result in a crash which could lead to a denial of service attack. In theory it could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext) although we are not aware of any working exploit leading to memory contents disclosure as of the time of release of this advisory. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. |
Affected by 4 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-jhyx-3a27-aaae
Aliases: CVE-2022-3786 GHSA-h8jm-2x53-xhp5 VC-OPENSSL-20221101-CVE-2022-3786 |
A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. |
Affected by 13 other vulnerabilities. |
VCID-kn8m-m9v4-aaaa
Aliases: CVE-2023-0466 |
Improper Certificate Validation The function X509_VERIFY_PARAM_add0_policy() is documented to implicitly enable the certificate policy check when doing certificate verification. However the implementation of the function does not enable the check which allows certificates with invalid or incorrect policies to pass the certificate verification. As suddenly enabling the policy check could break existing deployments it was decided to keep the existing behavior of the X509_VERIFY_PARAM_add0_policy() function. Instead the applications that require OpenSSL to perform certificate policy check need to use X509_VERIFY_PARAM_set1_policies() or explicitly enable the policy check by calling X509_VERIFY_PARAM_set_flags() with the X509_V_FLAG_POLICY_CHECK flag argument. Certificate policy checks are disabled by default in OpenSSL and are not commonly used by applications. |
Affected by 1 other vulnerability. Affected by 3 other vulnerabilities. Affected by 6 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-kxc1-w2u3-aaak
Aliases: CVE-2023-0401 GHSA-vrh7-x64v-7vxq |
A NULL pointer can be dereferenced when signatures are being verified on PKCS7 signed or signedAndEnveloped data. In case the hash algorithm used for the signature is known to the OpenSSL library but the implementation of the hash algorithm is not available the digest initialization will fail. There is a missing check for the return value from the initialization function which later leads to invalid usage of the digest API most likely leading to a crash. The unavailability of an algorithm can be caused by using FIPS enabled configuration of providers or more commonly by not loading the legacy provider. PKCS7 data is processed by the SMIME library calls and also by the time stamp (TS) library calls. The TLS implementation in OpenSSL does not call these functions however third party applications would be affected if they call these functions to verify signatures on untrusted data. |
Affected by 4 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-mu8w-emsy-aaak
Aliases: CVE-2023-0465 |
Improper Certificate Validation Applications that use a non-default option when verifying certificates may be vulnerable to an attack from a malicious CA to circumvent certain checks. Invalid certificate policies in leaf certificates are silently ignored by OpenSSL and other certificate policy checks are skipped for that certificate. A malicious CA could use this to deliberately assert invalid certificate policies in order to circumvent policy checking on the certificate altogether. Policy processing is disabled by default but can be enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function. |
Affected by 1 other vulnerability. Affected by 3 other vulnerabilities. Affected by 6 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-tkv7-cnhy-aaas
Aliases: CVE-2023-0464 |
Improper Certificate Validation A security vulnerability has been identified in all supported versions of OpenSSL related to the verification of X.509 certificate chains that include policy constraints. Attackers may be able to exploit this vulnerability by creating a malicious certificate chain that triggers exponential use of computational resources, leading to a denial-of-service (DoS) attack on affected systems. Policy processing is disabled by default but can be enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function. |
Affected by 1 other vulnerability. Affected by 3 other vulnerabilities. Affected by 3 other vulnerabilities. Affected by 6 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-ur7f-5ey8-aaak
Aliases: CVE-2022-4304 GHSA-p52g-cm5j-mjv4 |
A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection. |
Affected by 4 other vulnerabilities. Affected by 3 other vulnerabilities. |
VCID-uua4-ygek-aaah
Aliases: CVE-2023-0215 GHSA-r7jw-wp68-3xch |
The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on the BIO. This internal function is in turn called by the public API functions PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL cms and smime command line applications are similarly affected. |
Affected by 4 other vulnerabilities. Affected by 3 other vulnerabilities. |
Vulnerability | Summary | Aliases |
---|---|---|
This package is not known to fix vulnerabilities. |