VCID-1rk7-h5gt-9bc6
|
Issue summary: A timing side-channel which could potentially allow recovering
the private key exists in the ECDSA signature computation.
Impact summary: A timing side-channel in ECDSA signature computations
could allow recovering the private key by an attacker. However, measuring
the timing would require either local access to the signing application or
a very fast network connection with low latency.
There is a timing signal of around 300 nanoseconds when the top word of
the inverted ECDSA nonce value is zero. This can happen with significant
probability only for some of the supported elliptic curves. In particular
the NIST P-521 curve is affected. To be able to measure this leak, the attacker
process must either be located in the same physical computer or must
have a very fast network connection with low latency. For that reason
the severity of this vulnerability is Low.
The FIPS modules in 3.4, 3.3, 3.2, 3.1 and 3.0 are affected by this issue.
|
CVE-2024-13176
|
VCID-35z3-r83k-4bef
|
Issue summary: Some non-default TLS server configurations can cause unbounded
memory growth when processing TLSv1.3 sessions
Impact summary: An attacker may exploit certain server configurations to trigger
unbounded memory growth that would lead to a Denial of Service
This problem can occur in TLSv1.3 if the non-default SSL_OP_NO_TICKET option is
being used (but not if early_data support is also configured and the default
anti-replay protection is in use). In this case, under certain conditions, the
session cache can get into an incorrect state and it will fail to flush properly
as it fills. The session cache will continue to grow in an unbounded manner. A
malicious client could deliberately create the scenario for this failure to
force a Denial of Service. It may also happen by accident in normal operation.
This issue only affects TLS servers supporting TLSv1.3. It does not affect TLS
clients.
The FIPS modules in 3.2, 3.1 and 3.0 are not affected by this issue. OpenSSL
1.0.2 is also not affected by this issue.
|
CVE-2024-2511
|
VCID-e6zh-1ca4-tufz
|
Issue summary: Calling the OpenSSL API function SSL_select_next_proto with an
empty supported client protocols buffer may cause a crash or memory contents to
be sent to the peer.
Impact summary: A buffer overread can have a range of potential consequences
such as unexpected application beahviour or a crash. In particular this issue
could result in up to 255 bytes of arbitrary private data from memory being sent
to the peer leading to a loss of confidentiality. However, only applications
that directly call the SSL_select_next_proto function with a 0 length list of
supported client protocols are affected by this issue. This would normally never
be a valid scenario and is typically not under attacker control but may occur by
accident in the case of a configuration or programming error in the calling
application.
The OpenSSL API function SSL_select_next_proto is typically used by TLS
applications that support ALPN (Application Layer Protocol Negotiation) or NPN
(Next Protocol Negotiation). NPN is older, was never standardised and
is deprecated in favour of ALPN. We believe that ALPN is significantly more
widely deployed than NPN. The SSL_select_next_proto function accepts a list of
protocols from the server and a list of protocols from the client and returns
the first protocol that appears in the server list that also appears in the
client list. In the case of no overlap between the two lists it returns the
first item in the client list. In either case it will signal whether an overlap
between the two lists was found. In the case where SSL_select_next_proto is
called with a zero length client list it fails to notice this condition and
returns the memory immediately following the client list pointer (and reports
that there was no overlap in the lists).
This function is typically called from a server side application callback for
ALPN or a client side application callback for NPN. In the case of ALPN the list
of protocols supplied by the client is guaranteed by libssl to never be zero in
length. The list of server protocols comes from the application and should never
normally be expected to be of zero length. In this case if the
SSL_select_next_proto function has been called as expected (with the list
supplied by the client passed in the client/client_len parameters), then the
application will not be vulnerable to this issue. If the application has
accidentally been configured with a zero length server list, and has
accidentally passed that zero length server list in the client/client_len
parameters, and has additionally failed to correctly handle a "no overlap"
response (which would normally result in a handshake failure in ALPN) then it
will be vulnerable to this problem.
In the case of NPN, the protocol permits the client to opportunistically select
a protocol when there is no overlap. OpenSSL returns the first client protocol
in the no overlap case in support of this. The list of client protocols comes
from the application and should never normally be expected to be of zero length.
However if the SSL_select_next_proto function is accidentally called with a
client_len of 0 then an invalid memory pointer will be returned instead. If the
application uses this output as the opportunistic protocol then the loss of
confidentiality will occur.
This issue has been assessed as Low severity because applications are most
likely to be vulnerable if they are using NPN instead of ALPN - but NPN is not
widely used. It also requires an application configuration or programming error.
Finally, this issue would not typically be under attacker control making active
exploitation unlikely.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
Due to the low severity of this issue we are not issuing new releases of
OpenSSL at this time. The fix will be included in the next releases when they
become available.
|
CVE-2024-5535
|
VCID-fbbm-6m4a-tufb
|
OpenSSL 3.0.0 through 3.3.2 on the PowerPC architecture is vulnerable to a Minerva attack, exploitable by measuring the time of signing of random messages using the EVP_DigestSign API, and then using the private key to extract the K value (nonce) from the signatures. Next, based on the bit size of the extracted nonce, one can compare the signing time of full-sized nonces to signatures that used smaller nonces, via statistical tests. There is a side-channel in the P-364 curve that allows private key extraction (also, there is a dependency between the bit size of K and the size of the side channel). NOTE: This CVE is disputed because the OpenSSL security policy explicitly notes that any side channels which require same physical system to be detected are outside of the threat model for the software. The timing signal is so small that it is infeasible to be detected without having the attacking process running on the same physical system.
|
CVE-2025-27587
|
VCID-hgrh-75bf-7qbs
|
Issue summary: Calling the OpenSSL API function SSL_free_buffers may cause
memory to be accessed that was previously freed in some situations
Impact summary: A use after free can have a range of potential consequences such
as the corruption of valid data, crashes or execution of arbitrary code.
However, only applications that directly call the SSL_free_buffers function are
affected by this issue. Applications that do not call this function are not
vulnerable. Our investigations indicate that this function is rarely used by
applications.
The SSL_free_buffers function is used to free the internal OpenSSL buffer used
when processing an incoming record from the network. The call is only expected
to succeed if the buffer is not currently in use. However, two scenarios have
been identified where the buffer is freed even when still in use.
The first scenario occurs where a record header has been received from the
network and processed by OpenSSL, but the full record body has not yet arrived.
In this case calling SSL_free_buffers will succeed even though a record has only
been partially processed and the buffer is still in use.
The second scenario occurs where a full record containing application data has
been received and processed by OpenSSL but the application has only read part of
this data. Again a call to SSL_free_buffers will succeed even though the buffer
is still in use.
While these scenarios could occur accidentally during normal operation a
malicious attacker could attempt to engineer a stituation where this occurs.
We are not aware of this issue being actively exploited.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
|
CVE-2024-4741
|
VCID-n5cz-z9rw-rbd1
|
Issue summary: Use of the low-level GF(2^m) elliptic curve APIs with untrusted
explicit values for the field polynomial can lead to out-of-bounds memory reads
or writes.
Impact summary: Out of bound memory writes can lead to an application crash or
even a possibility of a remote code execution, however, in all the protocols
involving Elliptic Curve Cryptography that we're aware of, either only "named
curves" are supported, or, if explicit curve parameters are supported, they
specify an X9.62 encoding of binary (GF(2^m)) curves that can't represent
problematic input values. Thus the likelihood of existence of a vulnerable
application is low.
In particular, the X9.62 encoding is used for ECC keys in X.509 certificates,
so problematic inputs cannot occur in the context of processing X.509
certificates. Any problematic use-cases would have to be using an "exotic"
curve encoding.
The affected APIs include: EC_GROUP_new_curve_GF2m(), EC_GROUP_new_from_params(),
and various supporting BN_GF2m_*() functions.
Applications working with "exotic" explicit binary (GF(2^m)) curve parameters,
that make it possible to represent invalid field polynomials with a zero
constant term, via the above or similar APIs, may terminate abruptly as a
result of reading or writing outside of array bounds. Remote code execution
cannot easily be ruled out.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
|
CVE-2024-9143
|
VCID-qymw-yr4g-xbgm
|
Issue summary: Generating excessively long X9.42 DH keys or checking
excessively long X9.42 DH keys or parameters may be very slow.
Impact summary: Applications that use the functions DH_generate_key() to
generate an X9.42 DH key may experience long delays. Likewise, applications
that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check()
to check an X9.42 DH key or X9.42 DH parameters may experience long delays.
Where the key or parameters that are being checked have been obtained from
an untrusted source this may lead to a Denial of Service.
While DH_check() performs all the necessary checks (as of CVE-2023-3817),
DH_check_pub_key() doesn't make any of these checks, and is therefore
vulnerable for excessively large P and Q parameters.
Likewise, while DH_generate_key() performs a check for an excessively large
P, it doesn't check for an excessively large Q.
An application that calls DH_generate_key() or DH_check_pub_key() and
supplies a key or parameters obtained from an untrusted source could be
vulnerable to a Denial of Service attack.
DH_generate_key() and DH_check_pub_key() are also called by a number of
other OpenSSL functions. An application calling any of those other
functions may similarly be affected. The other functions affected by this
are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate().
Also vulnerable are the OpenSSL pkey command line application when using the
"-pubcheck" option, as well as the OpenSSL genpkey command line application.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.
|
CVE-2023-5678
|
VCID-vyp9-gg98-wqdc
|
Null pointer dereference in PKCS12 parsing
Issue summary: Processing a maliciously formatted PKCS12 file may lead OpenSSL
to crash leading to a potential Denial of Service attack
Impact summary: Applications loading files in the PKCS12 format from untrusted
sources might terminate abruptly.
A file in PKCS12 format can contain certificates and keys and may come from an
untrusted source. The PKCS12 specification allows certain fields to be NULL, but
OpenSSL does not correctly check for this case. This can lead to a NULL pointer
dereference that results in OpenSSL crashing. If an application processes PKCS12
files from an untrusted source using the OpenSSL APIs then that application will
be vulnerable to this issue.
OpenSSL APIs that are vulnerable to this are: PKCS12_parse(),
PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes()
and PKCS12_newpass().
We have also fixed a similar issue in SMIME_write_PKCS7(). However since this
function is related to writing data we do not consider it security significant.
The FIPS modules in 3.2, 3.1 and 3.0 are not affected by this issue.
|
CVE-2024-0727
GHSA-9v9h-cgj8-h64p
|